Azide photochemistry for facile modification of graphitic surfaces: preparation of DNA-coated carbon nanotubes for biosensing.
نویسندگان
چکیده
A facile, two-step method for chemically attaching single-stranded DNA to graphitic surfaces, represented here by carbon nanotubes, is reported. In the first step, an azide-containing compound, N-5-azido-nitrobenzoyloxy succinimide (ANB-NOS), is used to form photo-adducts on the graphitic surfaces in a solid-state photochemical reaction, resulting in active ester groups being oriented for the subsequent reactions. In the second step, pre-synthesized DNA strands bearing a terminal amine group are coupled in an aqueous solution with the active esters on the photo-adducts. The versatility of the method is demonstrated by attaching pre-synthesized DNA to surfaces of carbon nanotubes in two platforms-as vertically-aligned multi-walled carbon nanotubes on a solid support and as tangled single-walled carbon nanotubes in mats. The reaction products at various stages were characterized by x-ray photoelectron spectroscopy. Two different assays were used to check that the DNA strands attached to the carbon nanotubes were able to bind their partner strands with complementary base sequences. The first assay, using partner DNA strands tethered to gold nanoparticles, enabled the sites of DNA attachment to the carbon nanotubes to be identified in TEM images. The second assay, using radioactively labelled partner DNA strands, quantified the density of functional DNA strands attached to the carbon nanotubes. The diversity of potential applications for these DNA-modified carbon-nanotube platforms is exemplified here by the successful use of a DNA-modified single-walled carbon-nanotube mat as an electrode for the specific detection of metal ions.
منابع مشابه
Preparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents
A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of ...
متن کاملPreparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents
A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of ...
متن کاملGraphitic carbon nanostructures via a facile microwave-induced solid-state process.
A novel approach to fabricate highly graphitic carbon nanostructures such as carbon nanotubes (CNTs), metal/graphitic-shell nanocrystals and hollow carbon nanospheres (HCNSs) in a very short time is demonstrated.
متن کاملLabel-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection.
A label-free electrochemical biosensing platform has been developed for the first time using carbon nanotubes for facile detection of malondialdehyde, showing high sensitivity and acceptable selectivity with a low detection limit of 0.047 μmol L(-1) and a linear response ranging from 0.1 to 90 μmol L(-1).
متن کاملSynthesis and thermionic emission properties of graphitic carbon nanofibres supported on Si wafers or carbon felt
Preparation procedures and thermionic emission properties of graphitic carbon nanofibres (GCNFs) supported on Si wafer or commercial carbon felt supports are reported. GCNF/native-oxide Si wafer, GCNF/oxidized Si wafer, GCNF/Ni-coated Si wafer and GCNF/carbon felt nanocomposites are obtained by growing GCNFs from growth catalyst nanoparticles supported on these supports. Narrow herringbone GCNF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 42 شماره
صفحات -
تاریخ انتشار 2012